On polynomial symbols for subdivision schemes

نویسنده

  • Morten Nielsen
چکیده

Given a dilation matrix A : Z d → Z d , and G a complete set of coset representatives of 2π(A −− Z d /Z d), we consider polynomial solutions M to the equation g∈G M (ξ + g) = 1 with the constraints that M ≥ 0 and M (0) = 1. We prove that the full class of such functions can be generated using polynomial convolution kernels. Trigonometric polynomials of this type play an important role as symbols for interpolatory subdivision schemes. For isotropic dilation matrices, we use the method introduced to construct symbols for interpolatory subdivision schemes satisfying Strang-Fix conditions of arbitrary order.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ternary interpolatory Subdivision Schemes Originated from splines

A generic technique for construction of ternary interpolatory subdivision schemes, which is based on polynomial and discrete splines, is presented. These schemes have rational symbols. The symbols are explicitly presented in the paper. This is accompanied by a detailed description of the design of the refinement masks and by algorithms that verify the convergence of these schemes. In addition, ...

متن کامل

From approximating to interpolatory non-stationary subdivision schemes with the same generation properties

In this paper we describe a general, computationally feasible strategy to deduce a family of interpolatory non-stationary subdivision schemes from a symmetric non-stationary, non-interpolatory one satisfying quite mild assumptions. To achieve this result we extend our previous work [C. Conti, L. Gemignani, L. Romani, Linear Algebra Appl. 431 (2009), no. 10, 1971– 1987] to full generality by rem...

متن کامل

Interpolatory subdivision schemes with infinite masks originated from splines

Abstract A generic technique for the construction of diversity of interpolatory subdivision schemes on the base of polynomial and discrete splines is presented in the paper. The devised schemes have rational symbols and infinite masks but they are competitive (regularity, speed of convergence, computational complexity) with the schemes that have finite masks. We prove exponential decay of basic...

متن کامل

Reproduction of exponential polynomials by multivariate non-stationary subdivision schemes with a general dilation matrix

We study scalar multivariate non-stationary subdivision schemes with a general integer dilation matrix. We characterize the capability of such schemes to reproduce exponential polynomials in terms of simple algebraic conditions on their symbols. These algebraic conditions provide a useful theoretical tool for checking the reproduction properties of existing schemes and for constructing new sche...

متن کامل

Scalar multivariate subdivision schemes and box splines

We study convergent scalar d-variate subdivision schemes satisfying sum rules of order k ∈ N, with dilation matrix 2I . Using the results of Möller and Sauer in [18], stated for general expanding dilation matrices, we characterize the structure of the mask symbols of such schemes by showing that they must be linear combinations of shifted box spline generators of a quotient polynomial ideal J ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. Comput. Math.

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2007